a new method for prediction of the hospitalization period in icu using neural networks

نویسندگان

adel alinezhad kolaei

reza javidan

mohtaram nematollahi

farid zand

چکیده

introduction:apache (acute physiologic and chronic health evaluation) score is a medical tool designed to measure the severity of disease for adult patients admitted to intensive care units (icu). however, it is designed based on the american patients’ data and is not well suited to be used for iranian people. in addition, iranian hospitals are not equipped with high dependency units which is required or original apache. method: we aimed to design an intelligent version of apache system for recognition of patients’ hospitalization period in icus. the new system can be designed based on iranian local data and updated locally. intelligence means that the system has the ability to learn from its previous results and doesn’t need manual update. results: in this study, this new system is introduced and the technical specifications are presented. it is based on neural networks. it can be trained and is capable of auto-learning. the results obtained from final implemented software show better performance than those obtained from non-local version. conclusion: using this method, the efficiency of the prediction has increased from 80% to 90%. such results were compared with the apache outputs to show the superiority of the proposed method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

prediction of ignition delay period in d.i diesel engines

a semi-empirical mathematical model for predicting physical part of ignition delay period in the combustion of direct - injection diesel engines with swirl is developed . this model based on a single droplet evaporation model . the governing equations , namely , equations of droplet motion , heat and mass transfer were solved simultaneously using a rung-kutta step by step unmerical method . the...

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

presenting a new method for link prediction in social networks

today, online social networks are very popular due to the possibility of creating relationships between people all over the world. these social networks with possibilities such as friend recommendation generally use local features derived from social graph structure. for friend recommendation, there are different algorithms with local and global approaches. in this paper, we proposed an algorit...

متن کامل

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of health management and informatics

جلد ۱، شماره ۳، صفحات ۵۱-۰

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023